Isolation and bicarbonate transport of chloroplast envelope membranes from species of differing net photosynthetic efficiency.

نویسندگان

  • R P Poincelot
  • P R Day
چکیده

A three-phase discontinuous sucrose gradient yielded two fractions of chloroplast envelope membranes from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L., mesophyll and undifferentiated chloroplasts). These species were selected to represent plants with fast photorespiration and slow net photosynthesis, fast photorespiration yet fast net photosynthesis, and slow photorespiration and fast net photosynthesis, respectively. Buoyant densities were 1.08 and 1.11 g cm(-3). The light fraction contained primarily single (incomplete) membrane vesicles and the heavy fraction double (complete) ones. Enzymic, chemical, and electron microscopic examination of the complete envelope membranes showed a lack of microbial, microsomal, mitochondrial, and lamellar membrane contamination as well as stromal contamination. Envelope membranes for all species examined were found to contain 2 to 4% of the total chloroplast protein and yields of about 0.2 to 0.4 mg of protein were obtained from 40 g leaves. An Mg(2+)-dependent nonlatent ATPase, a marker enzyme for chloroplast envelope membranes, had the following activities (mumoles of phosphate released/hr(-1) mg protein(-1)): spinach, 77; sunflower, 163; old maize, 126; and young maize, 87. Bicarbonate transport was directly correlated with levels of ATPase activity in spinach and sunflower envelope membranes. Transport of HCO(3) (-) with sunflower envelope membranes approached that of young maize.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake of bicarbonate ion in darkness by isolated chloroplast envelope membranes and intact chloroplasts of spinach.

Bicarbonate uptake by isolated chloroplast envelope membranes and intact chloroplasts of spinach (Spinacia oleracea L. var. Viroflay) in darkness exhibited a similar dependency upon temperature, pH, time, and concentrations of isolated or attached envelope membranes. This similarity in uptake properties demonstrates the usefulness of the envelope membranes for the study of chloroplast permeabil...

متن کامل

Lipid and Fatty Acid composition of chloroplast envelope membranes from species with differing net photosynthesis.

Lipid and fatty acid compositions were determined for chloroplast envelope membranes isolated from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) leaves. The lipid composition was similar in sunflower, spinach, and undifferentiated maize chloroplast envelope membranes and different in maize mesophyll chloroplast envelope membranes. The predominant lipi...

متن کامل

Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts

Improving global yields of agricultural crops is a complex challenge with evidence indicating benefits in productivity are achieved by enhancing photosynthetic carbon assimilation. Towards improving rates of CO2 capture within leaf chloroplasts, this study shows the versatility of plastome transformation for expressing the Synechococcus PCC7002 BicA bicarbonate transporter within tobacco plasti...

متن کامل

Comparative Proteomics of Chloroplast Envelopes from C3 and C4 Plants Reveals Specific Adaptations of the Plastid Envelope to C4 Photosynthesis and Candidate Proteins Required for Maintaining C4 Metabolite Fluxes1[W][OA]

C4 plants have up to 10-fold higher apparent CO2 assimilation rates than the most productive C3 plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C4 plants in comparison with those of C3 plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C4 plants, such as malate, pyruvate, oxaloacetate,...

متن کامل

Characterisation of Cyanobacterial Bicarbonate Transporters in E. coli Shows that SbtA Homologs Are Functional in This Heterologous Expression System

Cyanobacterial HCO3(-) transporters BCT1, SbtA and BicA are important components of cyanobacterial CO2-concentration mechanisms. They also show potential in applications aimed at improving photosynthetic rates and yield when expressed in the chloroplasts of C3 crop species. The present study investigated the feasibility of using Escherichia coli to assess function of a range of SbtA and BicA tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 1976